Nom du produit:5-[(1,3-dioxolan-2-yl)methoxy]-2-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}-4H-pyran-4-one
IUPAC Name:5-[(1,3-dioxolan-2-yl)methoxy]-2-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}-4H-pyran-4-one
- CAS:886900-67-0
- Formule moléculaire:C20H23FN2O5
- Pureté:95%+
- Numéro de catalogue:CM893339
- Poids moléculaire:390.41
Unité d'emballage |
Stock disponible |
Prix($) |
Quantité |
Pour une utilisation en R&D uniquement..
Détails du produit
- N° CAS:886900-67-0
- Formule moléculaire:C20H23FN2O5
- Point de fusion:-
- Code SMILES:FC1=CC=C(C=C1)N1CCN(CC2=CC(=O)C(OCC3OCCO3)=CO2)CC1
- Densité:
- Numéro de catalogue:CM893339
- Poids moléculaire:390.41
- Point d'ébullition:
- N° Mdl:
- Stockage:
Category Infos
- Piperazines
- Piperazine is an organic compound consisting of a six-membered ring containing two nitrogen atoms in opposite positions in the ring. The chemical formula of piperazine is C4H10N2, and it is an important pharmaceutical intermediate. Pyrimidines and piperazines are known to be the backbone of many bulk compounds and important core structures for approved drugs; studies have shown that combining a pyridine ring with a piperazine moiety within a single structural framework enhances biological activity.
- Dioxolanes
- Dioxolane is a heterocyclic acetal with the formula (CH2)2O2CH2. It is related to tetrahydrofuran by exchanging an oxygen for the CH2 group. The isomer 1,2-dioxolane (in which the two oxygen centers are adjacent) is a peroxide. 1,3-Dioxolane is used as solvent and comonomer in polyacetal. The dioxolane-type and their hydrogenolysis can provide very valuable partially protected building blocks either for oligosaccharide syntheses or sugar transformations.
- Pyrones
- Pyrones or pyranones are a class of heterocyclic chemical compounds. They contain an unsaturated six-membered ring containing one oxygen atom and a ketone functional group. There are two isomers denoted as 2-pyrone and 4-pyrone. 2-Pyrone is used in organic synthesis as a building block for more complex chemical structures because it may participate in a variety of cycloaddition reactions to form bicyclic lactones. Pyrone derivatives are extremely prevalent structural motif in diverse naturally and synthetically occurring bioactive molecules having a broad array of chemotherapeutic potentials.