Nom du produit:1,4-Naphthalicacid
IUPAC Name:naphthalene-1,4-dicarboxylic acid
- CAS:605-70-9
- Formule moléculaire:C12H8O4
- Pureté:98%
- Numéro de catalogue:CM140931
- Poids moléculaire:216.19
Pour une utilisation en R&D uniquement..
Détails du produit
- N° CAS:605-70-9
- Formule moléculaire:C12H8O4
- Point de fusion:-
- Code SMILES:O=C(C1=C2C=CC=CC2=C(C(O)=O)C=C1)O
- Densité:
- Numéro de catalogue:CM140931
- Poids moléculaire:216.19
- Point d'ébullition:490.2°C at 760 mmHg
- N° Mdl:MFCD00014312
- Stockage:Keep away from sunlight,sealed in dry and cool place
Category Infos
- Naphthalenes
- Naphthalene is a hydrocarbon produced by the distillation of coal tar and is an aromatic white crystalline substance. Naphthalene is the most abundant component in coal tar. It is used as an insect repellant and insect fumigant. The compound is used in the manufacture of celluloid, dyes, hydrogenated naphthalenes, oil fumes, smokeless powders and synthetic resins.
- Hydrogen Storage Materials
- Hydrogen storage materials are materials which can store and release hydrogen gas. These materials are important for the development of hydrogen fuel cell technology, as they allow for the safe and efficient storage of hydrogen. There are several types of hydrogen storage materials, including: 1. Sorbent Materials. Carbon-based materials such as nanotubes, fullerenes, graphene, mesoporous silica, metal-organic frameworks (MOFs), isoreticular metal-organic frameworks (IRMOFs), covalent-organic frameworks (COFs), and clathrates belong to this category. 2. Complex Hydrides. These consist of light metal hydrides and chemical hydrides. 3. Nanostructured materials. These are composed of functionalized sorbent materials as well as nanoparticles of complex hydrides. The development of efficient and cost-effective hydrogen storage materials is crucial for the widespread adoption of hydrogen fuel cell technology.