Nom du produit:1,4-Naphthalicacid

IUPAC Name:naphthalene-1,4-dicarboxylic acid

CAS:605-70-9
Formule moléculaire:C12H8O4
Pureté:98%
Numéro de catalogue:CM140931
Poids moléculaire:216.19

Unité d'emballage Stock disponible Prix($) Quantité
CM140931-100g in stock ʼnǵ

Pour une utilisation en R&D uniquement..

Formulaire de demande

   refresh    

Détails du produit

N° CAS:605-70-9
Formule moléculaire:C12H8O4
Point de fusion:-
Code SMILES:O=C(C1=C2C=CC=CC2=C(C(O)=O)C=C1)O
Densité:
Numéro de catalogue:CM140931
Poids moléculaire:216.19
Point d'ébullition:490.2°C at 760 mmHg
N° Mdl:MFCD00014312
Stockage:Keep away from sunlight,sealed in dry and cool place

Category Infos

Naphthalenes
Naphthalene is a hydrocarbon produced by the distillation of coal tar and is an aromatic white crystalline substance. Naphthalene is the most abundant component in coal tar. It is used as an insect repellant and insect fumigant. The compound is used in the manufacture of celluloid, dyes, hydrogenated naphthalenes, oil fumes, smokeless powders and synthetic resins.
Hydrogen Storage Materials
Hydrogen storage materials are materials which can store and release hydrogen gas. These materials are important for the development of hydrogen fuel cell technology, as they allow for the safe and efficient storage of hydrogen. There are several types of hydrogen storage materials, including: 1. Sorbent Materials. Carbon-based materials such as nanotubes, fullerenes, graphene, mesoporous silica, metal-organic frameworks (MOFs), isoreticular metal-organic frameworks (IRMOFs), covalent-organic frameworks (COFs), and clathrates belong to this category. 2. Complex Hydrides. These consist of light metal hydrides and chemical hydrides. 3. Nanostructured materials. These are composed of functionalized sorbent materials as well as nanoparticles of complex hydrides. The development of efficient and cost-effective hydrogen storage materials is crucial for the widespread adoption of hydrogen fuel cell technology.

Related Products