Nom du produit:3-(2H-1,3-benzodioxol-5-yl)-6-({[3-(thiophen-2-yl)-1,2,4-oxadiazol-5-yl]methyl}sulfanyl)pyridazine

IUPAC Name:3-(2H-1,3-benzodioxol-5-yl)-6-({[3-(thiophen-2-yl)-1,2,4-oxadiazol-5-yl]methyl}sulfanyl)pyridazine

CAS:1115285-18-1
Formule moléculaire:C18H12N4O3S2
Pureté:95%+
Numéro de catalogue:CM621912
Poids moléculaire:396.44

Unité d'emballage Stock disponible Prix($) Quantité

Pour une utilisation en R&D uniquement..

Formulaire de demande

   refresh    

Détails du produit

N° CAS:1115285-18-1
Formule moléculaire:C18H12N4O3S2
Point de fusion:-
Code SMILES:C(SC1=CC=C(N=N1)C1=CC2=C(OCO2)C=C1)C1=NC(=NO1)C1=CC=CS1
Densité:
Numéro de catalogue:CM621912
Poids moléculaire:396.44
Point d'ébullition:
N° Mdl:
Stockage:

Category Infos

Pyridazines
Pyridazine, also known as o-diazobenzene, is a six-membered heterocyclic compound containing two nitrogen heteroatoms in the 1 and 2 positions with a special structure and a wide biological activity. Pyridazine is more and more popular in drug development, and a variety of pyridazine drugs have been developed and marketed. From the perspective of the therapeutic field, pyridazine drug molecules are mainly used for tumor treatment, but also involve in many therapeutic fields such as inflammation, hypertension and cardiovascular disease. With the increase and in-depth of research, pyridazine drugs will play more roles in the treatment of diseases.
Thiophenes
Thiophene is a five-membered heterocyclic compound containing a sulfur heteroatom with the molecular formula C4H4S. Thiophene is aromatic and is very similar to benzene; electrophilic substitution reaction is easier than benzene, and it is mainly substituted at the 2-position. Thiophene ring system has certain stability to oxidant.
Oxadiazoles
Oxadiazoles are a class of heterocyclic aromatic compounds with the molecular formula C2H2N2O, which have special biological activities and thermodynamic properties. Five-membered heterocyclic moieties composed of three or two heteroatoms are of great interest to researchers because these compounds show significant therapeutic potential. These heterocycles can serve as a building block for the development of novel molecular structures.