Nom du produit:2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethan-1-ol

IUPAC Name:2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethan-1-ol

CAS:103788-65-4
Formule moléculaire:C12H13NO2
Pureté:95%+
Numéro de catalogue:CM105096
Poids moléculaire:203.24

Unité d'emballage Stock disponible Prix($) Quantité
CM105096-1g in stock Ǖǯ
CM105096-5g in stock ƄȀŔ
CM105096-10g in stock ƞƄȀ
CM105096-25g 1-2 Weeks ňňǯ

Pour une utilisation en R&D uniquement..

Formulaire de demande

   refresh    

Détails du produit

N° CAS:103788-65-4
Formule moléculaire:C12H13NO2
Point de fusion:-
Code SMILES:CC1=C(CCO)N=C(O1)C1=CC=CC=C1
Densité:
Numéro de catalogue:CM105096
Poids moléculaire:203.24
Point d'ébullition:365.385°C at 760 mmHg
N° Mdl:MFCD00100006
Stockage:Store at 2-8°C.

Category Infos

Oxazoles
Oxazoles are heterocyclic aromatic compounds containing one oxygen atom and one nitrogen atom, separated by a carbon atom. The presence of two heteroatoms (oxygen and nitrogen) provides possible interactions (hydrogen, hydrophobic, van der Waals or dipole bonds) with a wide range of receptors and enzymes. Oxazole rings are valuable heterocyclic scaffolds for the design of novel therapeutics with anticancer, antiviral, antibacterial, anti-inflammatory, neuroprotective, antidiabetic, and antidepressant properties due to their wide range of targets and biological activities.
Benzenes
Benzene is an important organic compound with the chemical formula C6H6, and its molecule consists of a ring of 6 carbon atoms, each with 1 hydrogen atom. Benzene is a sweet, flammable, colorless and transparent liquid with carcinogenic toxicity at room temperature, and has a strong aromatic odor. It is insoluble in water, easily soluble in organic solvents, and can also be used as an organic solvent itself. The ring system of benzene is called benzene ring, and the structure after removing one hydrogen atom from the benzene ring is called phenyl. Benzene is one of the most important basic organic chemical raw materials. Many important chemical intermediates can be derived from benzene through substitution reaction, addition reaction and benzene ring cleavage reaction.

Column Infos

Related Products